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PHASE TRANSITIONS IN SLOT SYSTEMS FOR SMALL Kn NUMBERS 

P. A. Novikov,* L. Ya. Lyubin, and V. N. Denisov UDC 536.422:532.529.5 

The combined problems of sublimation of a thin deposit on the walls of a narrow 
slot and of freezing-on of a desublimate layer on the walls are considered. 

Weakly nonequilibrit~n phase transitions on the surfaces of parallel plates forming 
slot devices with the process rate depending substantially on the phase resistance were in- 
vestigated in [i] by using the methods of molecular kinetics. Our aim is to analyze the 
processes whose rate is determined almost entirely by the hydraulic resistance of the slot 
system and the thermal resistance of the walls, as the effect of phase resistance is negli- 
gible. 

In considering viscous and molecular-viscous sublimate flows, which correspond roughly 
to the Kn << 0.01 and 0.01 < Kn < 0.I ranges, we can use with an accuracy sufficient for 
technological purposes the ordinary Navier-Stokes equations. However, corrections for slip- 
page, thermal slip (creep), and the temperature jump must be introduced in the boundary con- 
ditions. If the height of the slot device is small in comparison with its plane dimensions 
(~ << i), the continuity and momentum equations can be conveniently represented in dimension- 
less form: 

OII - Ozm 
- - -  = y ~ p -  __. 

0r  0 r  z 
~,~Re,~ @v)~+a o~ + 

(2) 

(4) [ ] + ~ v ~  - + ~, ~,~ a ~ v ( n / o ) + ~ a ( n / o ) / a ~  
n / o  ' 

0r -- F v n  + n,o----7-.. ( , v ) ,  + ~ a~ . . . . . . . .  ~'~v~" + + ~,~v n / o  " 

The energy equation will be needed only to demonstrate that, in these processes, the 
variation of the sublimate temperature occurs almost exclusively along the walls of the slot 
device. However, in order to avoid the impression that some of the neglected caloric effects 
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might have physical significance, we shall write this equation in a rather rigorous form. 
In terms of dimensional variables, it is given by [2] 

div(XgradT)=pc,,vgradT-- '2~t [l(\ 0v~09 + Ov,,O.v. ) § Ov~ -l- ~ \-~z OV~Ox ~-'] 

-l-I,( 3v:jOz qL 0 @ )  2 .  , -}-4 [ (  OV,.OX. 31 divv)='. -I- ( Ovv, Off 31 divv)2@-.( OV=Oz 31 divv)2]} - bt'(div~-)e' 

while, after passage to dimensionless variables, we write it in a form suitable for analysis: 

O~ \ ' ~ - - /  Pe , - -~  (?~ 

(4) 
7r prM2*~ [ (\ OutO~ ]]'2+(\ Ouno: Jl2l-i-O(TZ)'J 

The boundary conditions which must be satisfied at the inside surfaces of the slot 
walls, written in terms of dimensional variables, are given by 

_ 9 __ % 0 v ,  3 ~ v, = T- -_Z_____ 1 ~ -  q- - -  - -  (grad T),, eg~ : = -T- J(• 
% Oz 4 pT 

T = T,~ ~- 2 -- a 7,, l OT -- for Z == ~ h. 
a ?,: @ 1 Pr Oz 

After  passage to dimensionless  v a r i a b l e s ,  we obta in  

2--a,, 1,26?]/g~ a~ d 3 ?~T vO, ~ ~ e j ( 0 ~ )  (5) 
% 1/'~7c M,II 0r 4 %N.H II 

@ = 0(~ -+) -T- 2 --  o~ 27r 1,267 ] / ~  ~ ae (6) 
7r 1 M,Pr]/?TII" 0~ ([ = _ I). 

It is assumed that sublimation (condensation) of the same substance occurs on both in- 
side surfaces of the slot. If y2 << Re, or ~z = O(Re,), then, considering that Pr ~ 1 for 
gases, we use (4) to provide the following estimate for the ratio of the temperature drop 
6T h along the slot height to the temperature drop 5T L in the symmetry plane: 6Th/6T L = 
O(Re,) + O(M,2). In view of (6), the role of the temperature jump @ - 0 w can be estimated 
by using the expression 

(o -- e~ , ) /aoL  = o (Kn Re,) + 0 (Kn M~). 

Consequently, if Re, << 1 and M, 2 << i, any transverse temperature drop is negligible, 
and we assume that phase transitions occur under quasi-equilibrium conditions in the slot 
device, i.e., the Clausius-Clapeyron expression relating the pressure, which, according to 
(2), is independent of the transverse coordinate ~ with an accuracy to 0(u to the subli- 
mate temperature, holds: 

e =- es (II1) = (1 - - e l n l I , ) -  ', (7) 

which means t h a t  sa tu ra ted  vapor f lows everywhere in  the s l o t .  I t  should be emphasized 
t h a t ,  in  s l o t  gas dynamics, f o r  ~2 << 1, ve ry  la rge  r e l a t i v e  pressure drops 6p = O(p, )  can 
be assoc ia ted  w i t h  smal l  va lues of  the parameter M, 2 << 1, s ince 

..... ? p~h YI  ~ V "  z ', z 

a .  (~,,~-- 1) T " 

Thus, if we neglect O(~) and O(Re,), it follows from (2), (3), (5), and (6) that 

~= 1 [ 1 - -~  2 2- -ao 2,527Y~- ] 3 72~(0) 
2 ~ (e) + VII + -- re ,  

w = ~ RT,. L O~ (111) j(+_) for  ~ = ! 1. 
p , h V  H 1 

(8) 

(9) 
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Fig. I. Pressure distribution in a slot system during sub- 
limation of water ice from the inside walls (m = 0.04457): 
solid curves: v = 1 and K0= = K0~ = 0; dotted curves: 
v = i, K02 = 0.i, and K0a = 0; dashed curves: v = 0 and 
K0= = K03 = 0; i) ~@w = i; 2) 10-i; 3) 5.10-2; 4) 10-2; 5) 
10-3; 6) i0-~; 7) 10-s; 8) i0-~; 9) I0-7; i0) 10-s; ii) 
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Fig. 2. Pressure distribution in a slot system during water 
vapor desublimation (m = 0.04457) at its inside walls; solid 
curves: v = 1 andK02 =K03 = 0; dotted curves: v = 1 
K02 =0.1, andK03 =0; dashed curves: v = 0 andK02 =Ko3 = 0; i) 
~@w = -i; 2) -0.5; 3) -10-I; 4) -5-10-2; 5) -10-2; 6) -i0-3; 
7) -10-4; 8) -lO-S; 9) --10-6; i0) -10-7; ii) -10-8; 12) -10 -9 

After integrating (i) with respect to ~ within the interval (-i, i) and using expres- 
sions (8) and (9), we obtain the relationship 

v ' V  . . . .  3_ (g_> + j 2 > ) ,  
2 

r l i  l~l 

~1 r (II~) = j" m (• d• = ~1 r, -}- K,DF2 -t- KaWa; Xlrs (II~) = .t" O~ (• de; 
l 1 

(lO) 
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• i �9 q) , , (x)  = -" 

% (~) . . . . .  g [o~ (x)] (~_~Z_) , ~  e~ = d ~  s 

O~ (• d• 

In view of (7), Os(~ l) is a logarithmic relationship with a very small coefficient m, 
especially if the latent heat of sublimation is large. At the triple point, m = 0.04457 
corresponds to water. Therefore, it can be expected that the effect of nonisothermicity on 
the viscosity of coefficients and thermal conductivity is not very substantial. In order to 
estimate this effect, the coefficients ~ and ~ can be represented by the approximate power 
relationship ~ ~ ~ ~ @i 6 with the exponent 6 ~ 0.8 for T ~ 273 K and 6 ~ 1 for T << 273 K 
[3]. If we consider that a pressure reduction by a factor of 10.18 lowers the saturated- 
vapor temperature of water vapor by only 9.34% in comparison with the initial level at the 
triple point, while a reduction in pressure by a factor of 4.45 lowers this temperature by 
only 6.23%, it is clear that ~ ~ ~ = 1 + b(Ei) , where A ( E i )  << 1 for such substances. These 
considerations might justify substituting unity for the coefficients [ and ~; however, for 
a higher degree of conclusiyeness, we shall continue to consider the temperature dependence 

~ ( O s ) .  

The solution of the problem is greatly simplified if the right-hand side of Eq. (i0), 
which characterizes the intensity of phase transitions, is a known function of the coordi- 
nates, while constant pressure values are assigned at the open sections of the slot device's 
contour. This is because (i0) is Poisson's equation in this case, and determination of the 

function consists in solving the (generally mixed linear problem with homogeneous bound- 
ary conditions of the second kind along the closed sections of the slot device's contour and 
boundary conditions of the first kind at the open sections of the contour. Having found 
the T function, we determine the pressure field in the slot by using the ~j(~l) diagrams, 
plotted on the basis of Eqs. (i0), and the coefficients K 2 and K3, calculated for the above 
conditions. 

If the local intensity of phase transitions is a function, even if a linear one, of 
the sublimate temperature, then, due to the nonlinear relationship (7) between H I and 0, a 
nonlinearity would arise in the right-hand side of Eq. (i0), which would be intensified con- 
siderably by the fact that the relationship T(N I) is also nonlinear, and the transition 
from Y and ~i can no longer be effected after the boundary-value problem has been solved. 
In this case, along with the nonlinearity of the right-hand side, there is also the nonlin- 
earity of the differential operator, which is due to the compressibility of the sublimate, 
nonisothermicity of the flow, and the slippage effect. 

Assume that heat is supplied to (removed from) the slot device's inside surfaces at 
which phase transitions occur through relatively thin walls. The outside surfaces of these 
walls are maintained at the constant temperatures T (+) and T(-), while variations in the 
thermal resistance caused by sublimation of the deposit can be neglected. Then, the dimen- 
sionless intensity J(• = (T,/A)(X(•177 (• and Eq. (i0) are rewritten as follows: 

Vi (moVlH1) - -  (~ IN H1)/(] - -  @ ] n ~ i )  ~- ~0~  = 0. ( 1 1 )  

H e r e  r = r  + r  + C o s ,  w h e r e  r  = ~ 1 (  1 - ~ i n  H~)1+6; r = Ko2~ - ~ i n  H~; r = -Ko3" 
(~ /Hi ) (1  - ~ l n ~ i )  - i - 6  

As an illustration, we shall consider two very simple boundary-value problems, one in- 
volving sublimation (condensation) at the inside surfaces of two parallel plates forming a 
flat channel with the length 2L, which is open on two sides, and sublimation (condensation) 
at the inside surfaces of a clearance between coaxial disks with the radius L. For these 
problems, Eq. (ii) is reduced to the following form: 

d Oo d_~_i ) + _ f _  
d~l ~1 ~0 d~i I - - ~ I 1 ] H  1 

We have v = 0 for the channel and v = 1 for the disks. 

dH,/d~=O for ~ =0 ,  ]]~==po/p, for ~ = ] / ~ o .  

+ 6e.,= 0. (12) 

The boundary conditions are 

(13) 
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Fig. 3. Pressure distribution in the 
clearance between disks during water 
ice sublimation (w = 0.04457) from the 
inside walls; ~ = i and K02 = K03 = 0. 
i) ~@w = i; 2) i0-~; 3) 10-2; 4) I0-3; 
5) I0-4; 6) I0-5; 7) i0-~; 8) i0-7; 9) 
i0-8; i0) i0-9; ii) 0. 
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If we use as the scale of pressure p, its value for $i = O, the boundary-value problem 
(12), (13) is reduced to the Cauchy problem for the boundary conditions 

H 1 = l ,  d [ I l l d ~ l  ~ 0 for ~1 ~ O. (14)  

In calculating sublimation devices, it is necessary to determine the limiting operating 
conditions corresponding to the maximum allowable temperature head 60 w producing at individ- 
ual points temperatures which, when exceeded, lead to abnormalities in the technological 
process in connection with the unfreezing of the desublimate. Expression (7) is a monotoni- 
cally increasing function, so that the above situation corresponds to an increase of the 
maximum pressure in the slot to its value at the triple point of the sublimable substance. 

Problems (12), (14) pertain to the four-parameter set of functions HI($I , 6@w, m, K02 , 
K0~). For Kn + 0, we have K02, K03 § 0, and the above set degenerates into the two-parame- 
ter set HI($1, 6@w, ~). The parameter ~ is considered to be a constant for each substance, 
sincethe temperature dependence A is not taken into account here. Generally speaking, there 
is another parameter, which is the exponent 6 in the ~(8) relationship. In order to esti- 
mate the significance of this relationship for the processes in question, we considered two 
cases in calculations: the relative case corresponding to 6 = 0(~ = 1), and the one where 
6 = l(~ = @), which is in a certain sense the limiting case. 

The results obtained by solving problem (12), (14) in the case of w = 0.04457 (H20) 
for 6@w > 0 (sublimation) and 6@ w < 0 (desublimation) are given in Figs. 1 and 2, respec- 
tively. If 16Owl << l, phase transitions are localized in a relatively narrow zone adja- 
cent to the open cutoff section of the slot system, i.e., the HI(~I) functions have in these 
cases the practically constant value H I ~ 1 virtually throughout the range of values of the 
coordinate $i, and they drop (increase) sharply only in the vicinity of the slot cutoff to 
a va]ue equal to the external pressure if the latter is considerably different from i, i.e., 

- -  << 

~i(/~0) >> i. 

The localization of phase transitions in a relatively narrow peripheral zone whose ex- 
tent is ~i << ~l manifests itself in the fact that the presence of a central zone in the 
slot device is no longer perceived, and the line curvature is ~ = const for v = i. There- 
fore, the HI($I) curves constitute virtually equidistant lines. 

In Figs. 1 and 2, the points corresponding to the values 6 = i, ~ = i, and K02 = K03 = 
0 lie very accurately on the solid curves corresponding to ~ = 0 for 6@ w > 0 and also for 
6@ w < 0 and HI ~ i0; consideration of the temperature dependence ~(@) within the i0 ~ HI 
20 range produces a shift to the left along ~i by not more than 4%. All the curves in Figs. 
i and 2 are plotted for 6 = 0. Thus, consideration of the temperature dependence ~(@) hard- 
ly affects the pressure distribution in the slot space even for large relative pressure 
drop values, at any rate for substances characterized by small values of the parameter m (of 
the HzO type). The temperature dependence ~(@) can affect considerably the kinetics of 
phase transitions in the slot in the case of sublimation from one of the walls and heat 
supply to the other [4]. 

The diagram given in Fig. 1 can be used for practical calculations. For instance, if 
the channel extent (disk diameter) 2L, the pressure P0 beyond the cutoff, and the effective 
heat transfer coefficients I(• = K(• are assigned, then, by equating the ratio P0/P, 
to HI(S1), we find w0 = ~i 2 for different values of 68 w by using the appropriate curves and 
then calculate the clearance by means of the expression 
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If p, and T, correspond to the triple point of the sublimate, unfreezing of the operating 
substance in the vicinity of gz = 0 will occur for smaller values of h. 

Figure 3 shows a diagram for m = 0.04457, v = I, and K02 = K0~ = 0, which was obtained 
from that given in Fig. 1 by affine transformation: ~z § ~z = gz/~m, where ~m is the zero 
of the ~1($~) function. It is evident that, with an increase in 5@w, the Nz(~Zl) profile 
tends, as its shape changes continuously, to a certain limiting configuration (extreme left) 
corresponding to 6@ w + ~. For m = 0.04457 and ~@w = 1 the H~(~z) profile is virtually 
identical to the limiting one. This self-similarity of the profile with respect to the 6@w 
parameter for sufficiently large values of the latter can be used for theoretical estimates 
if the limiting configuration and the gm(6@ w) dependence have been plotted. Analysis of the 
processes is greatly simplified if ~ << i, when the HI(~) profiles are self-similar with 
respect to m as well. The limiting configuration is in this case the circular arc ~z~= + 
~ 2 = i, which is located in the first quadrant and corresponds to the solution of problem 
(12), (14) when 6@ w § ~, m § 0, and K0~ = K0~ = 0 for v = 0 and v = i. "Curve i in Fig. 3 
(~@w = i) is in effect not different from a circular arc. 

In conclusion, it should be noted that if there are sections at the open cutoff ends 
where the sublimate is supplied to the slot, we should, strictly speaking, take into account 
the pressure drop in the relatively narrows bands corresponding to sections of hydrodynamic 
stabilization of flow in slots [5]. However, for small values of the Kn number, this pres- 
sure drop is of the same order as Re,, i.e., it can be neglected within the scope of our ap- 

proximation. 

NOTATION 

~, p, and T, velocity vector, pressure, and temperature of the sublimate, respectively; 
x, y, orthogonal coordinates in the median plane; z, distance from the median plane; A, 
latent heat of phase transition; R, gas constant; Cp and c v, specific heat at constant pres- 
sure and constant volume, respectively; u = c~/c~,; 1,1 and p', the first and the second co- 

. . . . . .  + + , 
efficient of dynamic vlscoszty, respectively; ~(-) and 6 (-) thermal conductivity coeffi- 
cients and the wall thicknesses for the corresponding z = +h values, respectively; T (-+) and 
J(+), temperatures of the outside surfaces of these walls and the flux densities of the sub- 
limate flow from them, respectively; 2h, magnitude of the clearance; L, characteristic lin- 
ear scale in the median plane of the slot system; V, characteristic scale of the sublimate 
velocity; p, and T,, characteristic values of the sublimate pressure and temperature corre- 
sponding to a certain point on the saturation line; Z, mean free path of molecules; ~----V(~+ 
-e~hlL); V = -e~ala~ +-fyala~._i_v~ -- ~a!a~ +__~yala~; x = L~; Y := L~U z = h~; e~, e v, e~ unit vectors along the 

x, y, z axes; $i = ~m0~; qz = s V = m0V1; u = h/L; Kn= s Knudsen number; Re, = pVh2/ 

o,LRT,, reduced Reynolds number; Pe = PrRe,, reduced Peclet number; Pr = ~,Cp/X,, Prandtl 

number; M, = Va,, characteristic value of the Mach number; a, = VZYcRT,; ~ = ph2/~,LV; H, = 

p,h2/p,LV; @ = T/T,; 6@ (+) = 0 (+) - i; Os(H 1) = (i - ~inN1)-l; o0, percentage of molecules 

diffusely reflected from the wall; ~, accommodation factor; ~ = RT,/A; J0 (i) = (hRT,/D,V2), 

3 It:"L2T* (K (-) -~K(+))~ (SOw -- J(+); JA(-+) = (hAI~*V2)J(-+); K(-+) = ~(-+)la(+); ~176 -~ ~<:"* %~A 

K ( ' ) 6 @ ( - )  @K(+)'5@(+)-- cD= l%cb o. I][~= I I / I I ,  = p / p , ;  Ko2 = 3,78p~,A . 2--(Y--~ ; Ko~ = h2p~ ; K2 == o~K,)2; K3 = 
K ( - )  + K (+) . . . . . . .  /~p, 1/R$7., % 

(o!<,):~; 8/8N, derivative in the direction of the outward normal to the contour bounding the 
slot system; v = 0 or v = 1 for a flat channel or the clearance between disks, respectively; 
P0, pressure beyond the cutoff section of the slot device; for v = i, ~ = r/L, where r is 
the distance between the center of the disk and an arbitrary point at its surface; ~ - ~/D,; 

~' = ~'I~,; ~ = ~I~,. 

i. 

2. 

LITERATURE CITED 

P. A. Novikov, L. Ya. Lyubin, and V. I. Novikova, Inzh.-Fiz. Zh., 52, No. i, 73-80 

( 1 9 8 7 ) .  
L. D. Landau and E. M. Lifshits, Mechanics of Continuous Media [in Russian], Moscow 

( 1 9 5 4 ) .  

555 



. 

4. 

. 

V. P; Shidlovskii, Introduction to Rarefied Gas Dynamics [in Russian], Moscow (1965). 
P. A. Novikov, L. Ya. Lyubin, and V. I. Balakhonova, Inzh.-Fiz. Zh., 28, No. i, 46~56 

(1975) .  
T. S. Lungren ,  E. M. Sparrow,  and D. S t a r ,  Teor .  Osn. I n z h .  R a s c h e t o v ,  Se r .  D, 86,  
No. 3, 86-91 (1964) .  

HEAT-TREATMENT PROCESSES IN THE FORMATION OF COMPONENTS 

FROM POLYMER COMPOSITE MATERIALS 

L. S. Slobodkin, G. N. Pshenichnaya, P. A. Vakul'chik, 
and I. S. Shchukina 

UDC 678.5:539.42 

A physicomathematical model of the heat treatment of components made from poly- 
mer composite materials on a rotating mandrel is considered. 

With the expanding use of polymer composite materials (PCM) of constructional specifi- 
cation in various branches of the economy, the problem of retaining the initial properties 
of the components in the PCM is of great urgency. For example, in fiber-glass constructions 
obtained by the rolling method, only one third of the strength of the reinforcing fiber may 
be realized in practice [i]. In connection with this, it is necessary, first of all, to 
ensure optimal conditions for performing all stages of the technological process of produc- 
ing PCM components: preparation of the initial components; soaking; formation of the com- 
ponents; solidification of the binder, etc. 

The important factors influencing the final properties of the material obtained are the 
methods employed and the technology for thermal hardening of the polymer binder. The first 
largely determines the relative homogeneity of development of the temperature fields over 
the cross section of the component which forms, and the second the temperature-time charac- 
teristics of the process, which must ensure correspondence between the energy densities sup- 
plied and the physicochemical changes in composition occurring. 

In realizing intensive conditions of PCM heat treatment in production, and in construct- 
ing and creating units in which effective thermoradiational-convective methods of energy 
supply are used, it is necessary to ensure "gradientless" (over the cross section of the com- 
ponent) heating in order to obtain high-quality components by methods of both wet and dry 
winding. In conection with the difficulty of experimental determination of temperature 
fields in PCM components, solidified on rotating mandrels, the mathematical modeling of such 
processes takes on practical importance. 

The heat-conduction problem for systems of two cylindrical bodies is solved: components 
in the form of PCM tubes wound on a mandrel, rotating at specified frequency m. The radia- 
tion sources are distributed on an arc s, as a result of which the component is subjected to 
pulsed heating. It is assumed that, if a point on the body falls under the radiation of the 
sources on arc s, then the pulse function ~(~) = i, whereas if the point is in shadow then 

= o .  

The mathematical model of this process comprises a system of equations of the form 

OT / 02T 1 OT ) , r Or 

aT ( 1 OT ) 
- -  -= a, ~- R ~ S r  ~ R~, (2)  

Ov \ Or z r Or / ' 
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